4. MDPROリサーチ

特許出願状況からみる各地域における 医療機器の技術動向

医療機器政策調査研究所(MDPRO) 主任研究員 中村

1. はじめに

科学技術のイノベーションは、人々の日常生活だけでなく、国際経済や政治、安全保障分野等の人間社会全般に大きな影響を与えるようになり、知的財産権を巡る話題も多い。

最近では、科学技術の分野でも急速に勢力を増している中国を念頭においた「技術流出防止」が米国、欧州そして我が国で大きな話題になっており、次世代通信技術の5GやAI等の先端技術が主要なテーマになっている。

科学技術研究の強化や産業の競争力を高めるための戦略はいずれの国にとっても重要であ り、我が国でも様々な検討がなされ、推進されているのであろうと想像する。

その中で、知的財産を扱う特許庁でも情報活用の支援の一環として特許出願技術動向調査が行われ、ビックデータともいえる世界の特許情報について論文情報も併せて分析し、各国や各企業の研究開発動向を把握して我が国の研究開発戦略や施策検討のために役立てようとしている。この調査の状況をみると医療機器産業に係る技術もあり、内視鏡、医療画像、超音波診断装置、人工関節等が公表されている。

翻って、我が国の医療機器産業の現況を見ると、成長産業として期待される中にあって新規 技術に対する取組みも活発化しているものの、海外の企業と比較して国産企業の一層の活躍が 求められる状況にある。

そこで、本稿では、医療機器分野の技術動向について、各国に出願された特許の調査を行い、特許の内容に立ち入るのではなく出願動向を大枠で捉えて俯瞰してみるような分析を行う ことによって、我が国と主要国の技術面の取組み動向の概要を示すことを試みた。

特許は出願から公開に至るまでに時間を要することから、扱うデータが2年程度前のものまでとなるが、出願数を指標とすることで定量的な調査が可能である。各国間の出願数を比較し、また、時間経過を追うことで客観的に医療機器に係わる世界の技術動向を知ることができる。

ここでのデータを足掛かりにして、さらに詳細な検討へと進むことを期待したい。

2. 分析の視点

(1) 特許出願

特許の本来の目的は、新規性の高い技術を発明した者に対して、一定の期間独占的に使用する権利を付与し、発明を保護するためのものである。企業や研究者は特許庁が定める書式に基づいて発明の内容を記載し、出願・審査を経て権利を得ることになる。

企業や研究者にとって将来的な商品につな

表 1. 公開特許公報に記載される主な内容

項目	備考
IPC分類 (国際特許分類)	発明が属する技術分類
出願日	
出願人	特許の権利を得る者
発明者	
発明の名称	
特許請求の範囲	権利を保護したい発明の内容
実施例	具体的な応用例
図面	

努

がる研究・開発の内容は守秘事項であり、発表・発売されるまでは外部に公表されることは ないが、特許は出願から1.5年を経て公開特許公報として開示され、誰もが閲覧できる状態 になる。

公開特許公報には、表1に示すような様々な情報が記載されており、これらの情報を分析 することで、いつ、誰が、どのような研究を行っているかを読み解くことが可能となる。

(2) 医療機器の商品開発プロセス

一般的に医療機器の開発プロセスは、市場探索に基づいたコンセプト立案や設計・プロト タイプ作成後に、非臨床試験や場合によっては治験などを含む臨床試験により安全性・有効 性の検証を実施し、承認申請や保険収載などを経てようやく上市となり、最初のプロトタイ プから発売まで数年を要することも珍しくない。

特許は、他社よりも早く権利を取得するために、コンセプトの立案時やプロトタイプ作成 時など開発の初期段階で出願することが多いと思われる。

このように考えると、前項で述べたように特許の出願から公開までに1.5年のタイムラグ はあるものの医療機器の場合は研究開発期間が比較的長いことから、他者の特許を分析する ことで、他者が取り組んでいる研究・開発の情報を製品の上市前に把握することができるこ とが多いとも考えられる。

また、今回のように一定の期間を設定して調査することで、技術や技術視点から製品のト レンドを考える材料にすることも可能と考えている。

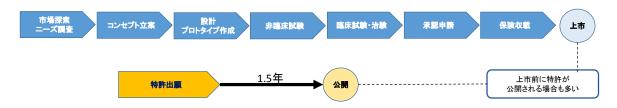


図 1. 医療機器の開発プロセスと特許出願~公開の関係イメージ

(3) 分析の視点

ここで、分析を進める要点は、特許の内容に立ち入るのではなく、特許の出願動向から医 療機器産業全体の技術動向を様々な視点から俯瞰的に知ることである。

しかし、医療機器は、診断用・治療用・衛生材料など使用目的も多彩であり、大型設備か ら使い捨ての材料などの形態の違いや、病院で使われるもの以外にも眼鏡やコンタクトレン ズなど身近な製品も多く、対象となる製品が非常に多岐にわたる。製造者も製品分野ごとに 特化する傾向にある。したがって、医療機器を一括りにするのではなく、適切に細分化した セグメント毎に動向を分析することが必要になる。

また、世界の国・地域ごとにも医療技術 や保険制度の違いがあり、医療機器産業と しての動向も異なる。

さらに、最近の技術としてAIに関する報 道が非常に多くなっているが、医療分野で の応用が実際にどのような医療機器に対し て、どの地域での研究が活発化されている のかなども含めて分析を行いたい。

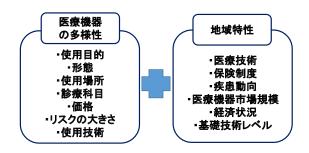


図2. 医療機器の多様性と地域特性

3. 分析の方法

特許や実用新案などの知的財産は、データベースを利用することで日本だけではなく、世界 各地の特許庁に出願されたものの詳細な内容まで閲覧することが可能である。本稿では、各特 許に付与される発明の技術分類であるIPC分類(International Patent Classification:国際特 許分類)」を用いて検索を実施した。またデータベースには検索結果を様々なランキング形式 で表示する機能も有しているので、その機能を分析ツールとして活用した。

<IPC分類について>

世界各国が新規性、進歩性を評価するために特許文献を共通に検索するためのツールとし て作成された技術的な内容による分類である。セクション、クラス、サブクラス、メイング ループ、サブグループの5つの階層からなり、階層が下位に行くに従って細分化された技術 を表す。

出願された発明に対してその発明が属する技術分野のIPC分類が付与され、公報上で公開 される。

(1) 特許検索条件の設定

以下のように検索条件を設定して分析する。

- ・年代別、地域別に各医療機器セグメントに対応させたIPC分類についての出願件数の調 査を行う。
- 年代別、地域別、医療機器セグメント別に、出願件数が多い出願人の上位ランキングを 作成し、どのような企業等がその領域での開発に注力しているのかを分析する。
- ・年代別、地域別、医療機器セグメント別に、出願件数が多いIPC分類の上位ランキング を作成し、どのような技術・製品に対する開発が注力されているのかを分析する。
- ・AIに関連した医療機器の特許についても、同様に年代別、地域別、医療機器セグメン ト別の出願件数調査、上位出願人及び技術分類の出願件数ランキングを作成し、分析を 行う。

表2. 検索条件とアウトプット項目

年代 (出願日)	地域 (出願先特許庁)	種別	IPC分類 (国際特許分類)	アウトプット
2009年 2010年 2011年 2012年 2013年 2014年 2015年 2016年	日本(JPO) 米国(USPTO) 欧州(EPO) 中国(SIPO) 韓国(KIPO)	特許 実用新案(中国のみ)	A61B A61C A61D A61F A61G A61H A61J A61L A61M A61N H05G	出願件数 上位出願人 上位IPC分類

(2) 対象年代

2009年から2016年までを対象とする。

※ 2017年、2018年に出願されたものは未公開のものが含まれ、正確な件数が把握できないため対象外と した。

(3) 対象地域

医療機器がその地域の産業としても市場としても一定の規模を有しており、特許が制度と して根付いている日本、米国、欧州、中国、韓国の5地域とする。この5地域の特許庁に出 願されたものを対象とする。

- ※ 欧州については、欧州各国の特許庁ではなく、欧州特許条約(EPC)に基づく欧州特許庁(EPO)経由で 出願されたものを対象とする。
- ※ 今回の調査では、出願人の国籍に関する調査は実施していない。調査対象は、あくまでも各地域の特 許庁別に出願された件数である。
- ※ 各地域の特許庁にはその地域以外の居住者であっても出願は可能であるため、その地域への出願数を もってその地域の動向を表しているとは限らないということは、留意する必要がある。

(4) 対象種別

上記年代に上記特許庁に出願、公開された特許を対象とする。ただし、中国については、 特許と同等数が出願されている実用新案についても対象とする。

※ 米国と欧州については実用新案の制度がない。日本と韓国については、表3に示すとおり、実用新案 の出願件数が極めて少ないため対象外とした。

表3. 特許と実用新案の出願件数の比較(2016年)

	日本		中国		韓国	
種別	特許	実用新案	特許	実用新案	特許	実用新案
件数	250,538	6,075	1,176,765	1,115,713	134,880	4,151
割合	98%	2%	51%	49%	97%	3%

<中国の実用新案について>2),3),4)

制度としては、実体審査がなく登録までの期間が短いこと、特許に比べて進歩性の判断基準が低く、権利の期間が特許の20年に対して10年と短いことなどは、日本の実用新案とおおむね共通である。日本と異なるのは、権利行使の際にも審査がない点である。また、一度登録された権利を他者が無効化することが難しく(時間と費用を要する)、権利として安定しているといえる。

中国政府から2008年に「国家知的財産権戦略綱要」が公布されると、各省庁や自治体が補助金の給付や減税などの経済的な支援をはじめとした多くの施策を実行したことで、特許も含めて出願数が爆発的に増加した。中小企業が奨励制度を活用して進歩性の低い発明に対し、コストの低い実用新案の出願を積極的に行っているようである。

(5) 医療機器セグメント

医療機器の分類にはいくつかあるが、形態や用途などによって類似の製品郡に分類されている『薬事生産工業動態統計』がで用いられている分類を参考にして、表4に示した12のセグメントを設定した。各セグメントに含まれる主な医療機器についても、表4を参照のこと。

(6) 医療機器セグメントとIPC分類の対応

特許庁から出されている『特許出願動向調査報告書』⁶⁾の中で、『医療機器』に対応する技術分野として定義しているIPC分類であるA61B、A61C、A61D、A61F、A61G、A61H、A61J、A61L、A61M、A61N、H05Gのサブグループまでの全項目を関連する医療機器セグメントに振り分けた。詳細は、表4を参照のこと。

- ※ 同一技術が複数の医療機器セグメントに使用される可能性があるものは、重複を認めた。
- ※ 上記IPC分類上で注記として他の技術分類が指定されているものは、それに従った。
- ※ 上記IPC分類に含まれる技術であっても、『医薬品、医療機器等の品質、有効性及び安全性の確保に関する法律(薬機法)』に規定されていないものは除外した。

AIについては、特許庁が、毎年特定の製品・技術を選定して詳細な調査・分析を行っている『特許出願技術動向調査』 7 の中で『人工知能技術』をテーマとした際に用いたIPC分類に倣いG06Nとした。ただし、上記分類と各医療機器セグメントとの組み合わせでヒットする件数が非常に少なかったため、AIに関連するキーワードを含めた形で検索を行った。詳細は、表4を参照のこと。

No.		セグメント	主な医療機器	IPC分類 (AIについてはキーワードの検索式含む)
1		画像診断システム	X線装置, CT, MRI 超音波画像診断装置 および関連装置	A61B5/055, A61B6, A61B8/02~A61B8/10, A61B8/13~ A61B8/15, G01T1/161, G03B42/02~G03B42/04, A61M36/14, G21F1~G21F3
2	診断系機	生体現象計測機器	血圧計,心電計,脳波計 呼吸機能検査用機器,内視鏡 および関連装置	A61B1, A61B5/01~A61B5/0496, A61B5/053, A61B5/06~ A61B5/1495, A61B5/16~A61B5/22, A61B7, A61B8/12, A61B9 ~A61B13, A61B17/94, A61M21, A61N1/00~A61N1/04, A61N1/08~A61N1/20, A61N1/32, A61N1/40
3		検体検査機器	血液検査機器,尿検査機器 免疫分析機器	A61B5/15~A61B5/157, G01N33/15, G01N33/48~G01N33/98
4		施設用機器	噴霧器,吸引器,洗浄機器, 手術台/診療台 滅菌/消毒用機器,保管器具	A61B50, A61B90/60~A61B90/98, A61F5/48, A61G9, A61G12 ~A61G13, A61G15/02~A61G15/12, A61J1/03, A61L2, A61M9 ~A61M15
5		処置用機器	注射針 チューブ/カテーテル 輸液ポンプ 結紮/縫合用機器, ギブス等	A61B17/02~A61B17/138, A61B17/20, A61F5/01~A61F5/40, A61F5/56~A61F5/58, A61F15, A61F13/36~A61F13/44, A61J1/05~A61J1/22, A61L15/07~A61L15/14, A61L17~A61L26, A61L29, A61L33, A61M1/02~A61M1/04, A61M3~A61M5, A61M5~A61M31, A61M37~A61M39
6	治療系機	生体機能補助機器	人工心臓弁,ペースメーカー 人工血管,ステント,透析器 人工呼吸器 その他人工臓器等	A61F2, A61F5/41~A61F5/458, A61G11, A61H31, A61L27~ A61L28, A61M1/10~A61M1/38, A61M15~A61M19, A61N1/00 ~A61N1/05, A61N11/08~A61N1/20, A61N1/32~A61N1/40
7	器	治療用・手術用機器	放射線治療関連装置 温熱療法用機器 鍼灸療法用機器 レーザー治療/手術用機器 手術用電気機器,結石砕石装置	A61B17/225, A61B18, A61B34, A61B90/10~A61B90/57, A61F7, A61H1, A61H15~A61H23, A61H33~A61H35, A61H37 ~A61H39, A61L31, A61M1/08, A61M36/02~A61M36/12, A61N1/00~A61N1/04, A61N1/06~A61N1/378, A61N1/40, A61N2~A61N7
8		鋼製器具	切断/絞断/切削器具 挟器,整形外科用機器	A61B17/14~A61B17/17, A61B17/22~A61B17/221, A61B17/24~A61B17/92
9		歯科用機器・材料	歯科診察室用機器 歯科技工用機器, 歯科材料	A61C, A61G15/14, A61H13, A61N1/00~A61N1/04, A61N1/08~A61N1/20, A61N1/32, A61N1/40, A61K6
10		眼科用品	視力矯正用眼鏡, 眼鏡レンズ コンタクトレンズ, 検眼用品	A61B3, A61F9, A61H5, A61L12, G02C1/00~G02C11/04, G02C11/08
11	その	衛生材料	女性用避妊用具,手術用手袋	A61B42, A61B46, A61F6/06~A61F6/24
12	他	家庭用医療機器	家庭用マッサージ機 家庭用治療浴装置、補聴器 コンドーム	A61F6/02~A61F6/04, A61F13/02~A61F13/34, A61F13/45~ A61F13/84, A61H7~A61H11, A61H33, A61H37, A61H39, A61L15/16~A61L15/64, A61M15, A61N1/00~A61N1/04, A61N1/08~A61N1/26, A61N1/32, A61N1/40, A61N2, G02C11/06, H04R25
		AI	-	G06N 人工知能+学習+ラーニング+(ニューラル+神経)adj (ネット+回路)+DNN+CNN+RNN

表4. 医療機器セグメントと適用するIPC分類

※ セグメントは、薬事工業生産動態統計の大分類を参考にし、「画像診断システム」と「画像診断用 X線関連装置及び用具」、「歯科用機器」と「歯科材料」をまとめた。

(7) 検索データベース

特許情報提供サービス「Shareresearch」(株式会社日立社会情報サービス)を使用した。

4. 分析の結果

分析の結果については、まず、全体的な傾向を述べ、次に各国・地域毎にセグメント別の出 願動向をグラフで示しながら各国・地域間の比較やセグメント間の比較、年次推移等から特徴 を抽出して述べ、最後に、医療機器分野でも将来の主要技術になるAIを取り上げて傾向分析 を行った。

また、これらの分析を進めるにあたっては出願件数を基にしたグラフ上の特徴からだけでな く、各セグメントにおける上位(出願件数の多い)の出願人、上位のIPC分類から読み取れる詳 細技術の動向についても結果に加えた。(これらの基礎データについては紙面の制約から本稿 には添付していない)

なお、医療機器の目的別のセグメント動向を分かりやすくするために、グラフでは「診断系 機器」のセグメントを青系、「治療系機器」を赤系、「その他」を緑系にそれぞれ色分けした。

※ 今回、分析に用いた各地域別・セグメント別の上位出願人ランキングリストと上位IPC分類ランキン グリストは、紙面制約から本稿への添付は断念したが、追って、詳細を医機連ホームページ等に掲載 する予定である。

http://www.jfmda.gr.jp/

(1) 各地域の総出願件数の動向

はじめに全体的な出願傾向を捉えるため に、各特許庁(日・米・欧・中・韓)への総 出願件数の推移を図3に示した。

中国への出願が急増していることが顕著である。2016年の時点で実用新案と合わせた総数では米国の約10倍、日本の約20倍になっている。特許と実用新案がほぼ同数で増え続けており、これは前述のとおり、中国政府による出願の奨励政策の結果や、「中国製造2025」でも注力している製造業全体を強化している状況を反映しているものと思われる。実用新案については、2013年から2014年にかけて伸びが鈍化している期間があるが、これは中国特許庁の審査基準がこの時期に厳しくなった影響と見られている。

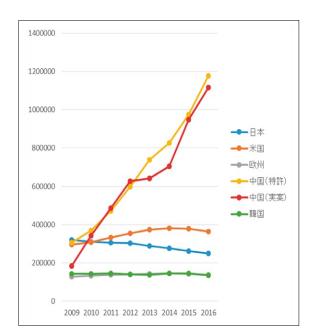


図3. 各地域への総出願件数

米国への出願は、2009年から2016年を通してみると微増傾向にある。

日本は、リーマンショック以降は数よりも質を優先した出願を行うようになっているという見方もあり、減少傾向で推移しているのがわかる。

欧州と韓国については、グラフの線が重なってしまうほど、ほぼ同数で横ばいに推移している。

(2) 各地域の医療機器分野における出願件数の動向

次に、医療機器分野の出願件数の推移を 図4に示す。

ここでも、中国への出願は特許・実用新 案ともに急増している傾向にあり、総出願 と同じである。以下に各国・地域の特徴的 傾向を示す。

- ・米国への出願件数は、高い水準で増加傾向にある。
- ・日本は、総出願総数では減少傾向であったが、医療機器分野では横ばいとなっている。
- ・欧州は、総出願全体の件数が韓国とほぼ 同数と決して多くはないが、その中での医 療機器に関する出願数は多い傾向にある。
- ・韓国での医療機器の出願は若干増加傾向 を示している。

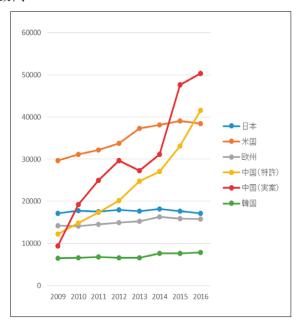


図4. 各地域への医療機器分野の出願件数

(3) 日本への医療機器分野の出願動向

減少傾向のセグメントが多い が、その中で、2009年から2016 年の期間を通してみると生体現 象計測機器は、増加傾向にあり、 件数的にも一番多い。

次に多いのが、処置用機器と なっているが、1位の生体現象 計測機器とは大きな開きがある。 生体機能補助機器や治療用・手 術用機器も含めた治療用機器は、 年間3000件程度の件数でほぼ横 ばいに推移している。

後述する図16で示されるよう に、画像診断システムの順位が 他地域よりも高いことも含めて、 「日本の医療機器産業は、診断系

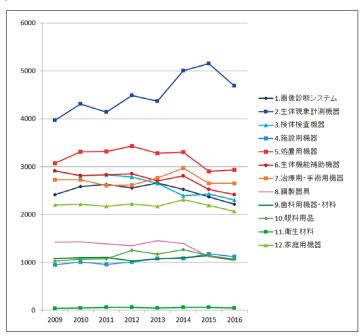


図5. 日本への医療機器セグメント別出願件数

に強く、治療系に弱い」といわれている傾向が表れている様に見える。

生体現象計測機器のセグメントでの出願人を見てみると、オリンパス、富士フイルム、 HOYAといった内視鏡メーカーが上位に入っており、IPC分類でも内視鏡に関連する技術分 野の出願が多いのが特徴的である。

(4) 米国への医療機器分野の出願動向

米国でも生体現象計測機器の セグメントの件数が最も多く、 増加傾向にある。次に多い生体 機能補助機器や処置用機器など は、2013年までは増加傾向に あったものが、2014年以降は横 ばいになり、伸びが鈍化してい る。これらは全体的な傾向のよ うにも見えるが、何によるもの かについては上位の出願人及び IPC分類の動向から検討するこ とにした。

生体現象計測機器の出願人は、 国内のオリンパス、富士フイル ムなどの内視鏡メーカーが多い が、フィリップス、メドトロニッ

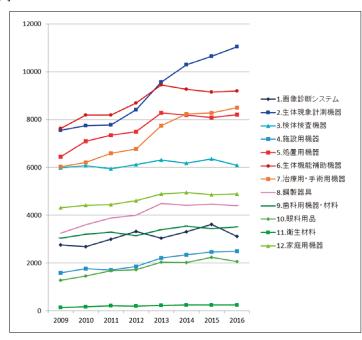


図6. 米国への医療機器セグメント別出願件数

ク、ボストン・サイエンティフィックといった欧米の総合医療機器メーカーの出願件数も多

い。IPC分類では、内視鏡に関する技術よりも診断のための検出・測定に関する技術やペー スメーカーなどの電気的な刺激の技術に関する出願が多い。

生体機能補助機器のセグメントの出願人の傾向を見てみると、メドトロニック、ボスト ン・サイエンティフィック、カルディアックペースメーカー、フィリップスなどからの出願 が多く、多少の変動はあるが、同じ傾向が続いている。

上位のIPC分類を見てみると、電流による刺激に関する出願が最も多く増え続けている が、ガスを用いる呼吸器用装置、呼吸又は麻酔マスク、気道管、呼吸器装置用弁などの技術 が2013年を境に横ばい、または減少の傾向を示しており、呼吸器系製品に関する出願が伸 びていない傾向が見られ、このセグメント全体で横ばいになっている原因のひとつと考えら れる。

また、同様に2013年以降に横ばいになっている処置用機器については、出願人はボスト ン・サイエンティフィック、サノフィ、エチコンなどの企業が多く出願し続けている。タイ コなどは件数を減らしているが、コヴィディエンは大幅に件数を増やしており、上位の企業 の出願数は、おおむね増えている傾向にある。IPC分類では、カテーテル関連の技術が増加 している一方で、手術用ステープラー、カテーテルの導入・案内、注入装置の電気的制御手 段などの技術に関する出願が2013年以降伸びていない傾向が見られる。2013年以降横ばい の傾向が見られるのは、一つの大きな要因によるものではないようにも思われる。

上位出願人ランキング上での日本企業は、画像診断システム、生体現象計測機器、眼科用 品のカテゴリーでは多く見られるが、その他のセグメントでは非常に少ない。また、大手企 業が目立つ。検体検査機器のセグメントで東京大学が入っているが、その他の中小企業やベ ンチャーの出願は少ない。また、中国企業も非常に少ない。

(5) 欧州への医療機器分野の出願動向

全体の出願件数は米国の半分 以下であるが、セグメント毎の 傾向は米国に似ており、生体現 象計測機器が件数的にも多く増 加傾向にある。

続いて生体機能補助機器、処 置用機器の出願件数が多いが、 2014年をピークにやや減少傾向 に転じている。

生体機能補助機器の出願人に ついては、メドトロニック、ボ ストン・サイエンティフィック、 フィリップス、クック、コヴィ ディエンなどからの出願が多く、 2015年以降コヴィディエンは出 願数を減らしているが、そのほ

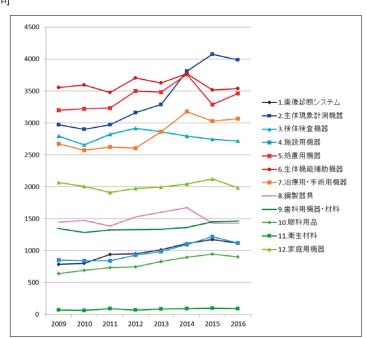


図7. 欧州への医療機器セグメント別出願件数

かの上位企業はあまり大きな変化はない。上位IPC分類の推移を見ていくと、心臓弁、ガス を用いる呼吸器用装置、人工関節などの技術に関する出願が減っている。

処置用機器に関しては、コヴィディエン、サノフィ、エチコンなどの上位企業からの出願 がいずれも減少傾向になっている。また、IPC分類でも、注射器に関する複数の細部技術分 類やステープラーに関する技術分類でも減少傾向が見られた。

各セグメントともにやや米国企業が出願件数を減らしている分欧州の企業が出願件数では 上位に入る傾向が見られる。

(6) 中国への医療機器分野の出願動向(特許)

ほぼすべてセグメントとも右 肩上がりで出願件数が増加して おり、他の4地域とは明確に異 なる状況である。

上位7つのセグメントでは 2009年から2016年の7年間で3 倍以上に件数が増加している。 先述の通り、中国全体の産業の 成長に合わせて、中国政府や自 治体が打ち出した様々な出願推 進施策が反映されたものと思わ れる。

セグメント別の件数は、生体 現象計測機器が一番多く治療系 のセグメントが続いている傾向 などは欧米に近い。

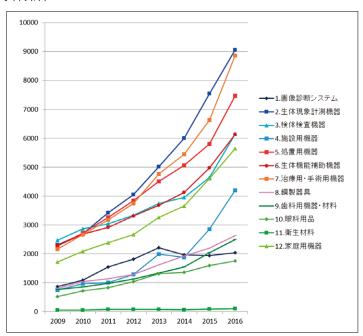


図8. 中国への医療機器セグメント別出願件数(特許)

出願人の傾向を見てみると、上位には欧米でも上位に位置するグローバルな海外企業が多 く、これらの企業も中国を重要な市場として認識し、特許戦略を立てているものと思われる。

一方でどのセグメントの上位にも中国企業が入っており、日・欧・米のグローバル企業が 上位を独占しているような状態になっているわけではない。また、上記の海外企業以外はほ とんどが中国の出願人で占められている。企業だけではなく、大学からの出願が非常に多い のも中国の特徴といえる。これは、特許の件数が大学の研究レベルを示すバロメーターとし て認識されていることも要因になっているようである。

(7) 中国への医療機器分野の出願動向(実用新案)

先述の通り、2013年から14年にかけて実用新案の審査基準が厳しくなった影響で一時的に 出願件数が減少している。2016年にもやや伸びが鈍化しているようにも見えるが、こちらの 原因については把握できていない。図3に示した総出願数における実用新案のグラフでは、さ ほど伸びが鈍化しているようには見えないので、医療機器分野に関連した要因があるのかも しれない。

セグメント別では、他の地域と比較すると生体現象計測機器、生体機能補助機器、検体

検査機器が少なく、施設用機器、 家庭用機器などが多い傾向にあ る。これは、より技術の進歩性 が高い発明は特許として申請さ れるため、実用新案では形状や 構造に関する発明が中心となり、 そのような技術を活かしやすい セグメントの出願が多くなるた めと考える。

出願人の傾向は、海外勢では シーメンスが実用新案にも多数 の出願を行っているが、特許で は多数の出願を行っていたその 他の日・欧・米の企業からの出 願は見られない。

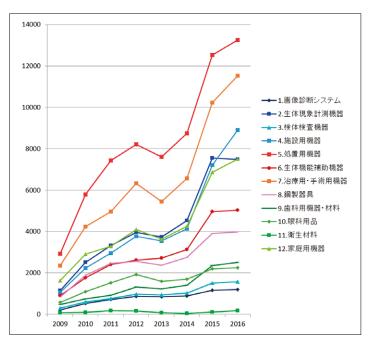


図9. 中国への医療機器セグメント別出願件数(実用新案)

(8) 韓国への医療機器分野の出願動向

他の地域と同様に、生体現象計測機器のセグメントが一番件数多く、増加傾向にあるが、 出願人の上位はサムスンなどの韓国の企業や大学が多い。上位のIPC分類でも、診断のため の検出・測定、脈拍の測定、身体の動きの測定、人体の温度の測定などの技術に関するもの が多く、他の地域で多かった内視鏡関連の技術が突出して多いわけではない。

2番目は、2012年までは最も 多かった検体検査機器のセグメ ントであり、他の地域よりも上 位に来ている。このセグメント の上位IPC分類は、他の地域と 同様で血液や血糖などの分析技 術に関するものが多い。出願人 の上位は、韓国の大学が占めて おり、この分野での研究が活発 に行われているものと思われる。

全体の出願人の傾向として、 その他の地域に見られた欧・米 のグローバル企業からの出願が 少ない。米・欧・中に出願して いた日本の企業からの出願も少 ない。また、中国と同様に大学 からの出願が多い。



図10. 韓国への医療機器セグメント別出願件数

(9) AI技術を使用した医療機器の出願動向

以下、近年医療機器への応用研究も多く行われているAI技術に関連した調査結果を示す。 はじめに表4に示したIPC分類及びキーワードを用いて各地域でのAI技術に関する出願動向、 次にAI技術を使用した医療機器の出願動向を示し、最後に医療機器セグメント毎の割合か ら、どのような医療機器にAI技術が使用されているのか調査結果を示す。

1) AI技術の出願動向

表4に示したIPC分類及びキー ワードを用いた医療機器以外の分野 も含むAI技術全体の出願動向を図 11に示す。

ここでも中国への出願が2年間で 2倍以上に急増しており、米国での 出願の2倍以上になっている。

各地域毎のAI技術に関する出願 の上位出願人ランキングによれば、 中国への出願人の上位は、世界最大 の電力会社である中国のステート・ グリッドをはじめ中国の企業や大学 で占められている。

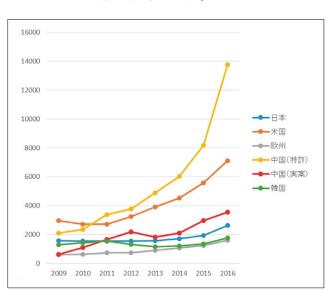


図11. AI技術に関連する出願数推移

中国以外では、22位に米国のグーグルが入っている。それ以降は、サムスン、IBM、マ イクロソフト、ファナックなどの海外勢が入っているが、ほぼ中国勢が大半を占めている。 一方で、米国への出願はIBM、マイクロソフト、グーグルなどの米国IT企業が上位を 独占しているが、中国企業は21位のファーウェイほか数社のみであり、AI技術に関連す る特許に限った傾向ではないが、海外への出願が非常に少ない。

2) AI技術を使用した医療機器の出願動向

次に、図12にAI技術を使用した 医療機器に関する地域毎の出願件数 の推移を示す。

特許の件数は、米国が一番多くこ の数年で件数も増えている。次いで 中国の特許も急増しているが、この 分野での実用新案の件数は少ない。

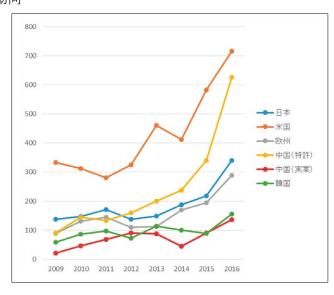


図12. AI技術を使用した医療機器に関連する出願数推移

3) AI技術を使用した医療機器のセグメント別割合

図13に2016年における各地域のAI技術を使用した医療機器に関する出願件数を合計し、 どのセグメントにAI技術が応用されているかの割合を示した。

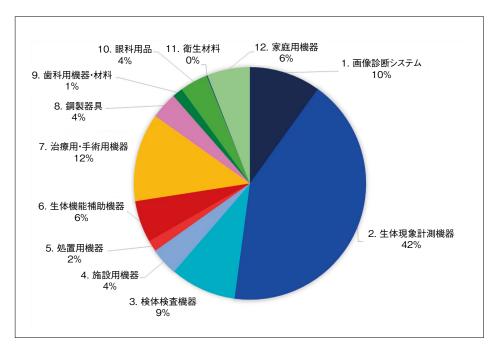


図13. AI技術を使用した医療機器に関連する出願のセグメント別内訳

生体現象計測機器が42%と圧倒的に多い。このセグメントの上位IPC分類をみていくと 身体の動きを計測するもの、血流の測定に関連するもの、心理状態の検査、生体電気信号 などを計測する技術に関する出願が多い。

出願人別に見てみると、米国ではウェアラブルデバイスやアプリを用いた製品を開発し ているベンチャー系とフィリップスやシーメンスといった大手企業、IBMのようなプラッ トフォームのメーカーや大学からの出願も目立つ。欧米以外では韓国のサムスンの出願件 数も多い。

中国への出願の上位は、シーメンスやフィリップスの欧州大手企業、中国の大学・企業、 米国の大学、セグメントによっては日本の企業が入り混じっているような状況である。

日本への出願の内訳を見てみると、NTTやATRなどの通信会社、富士フイルムやオリ ンパスの内視鏡メーカー、ソニー、日立、NEC、富士通などの電気/インフラ系の企業な どが目立つ。トヨタ自動車も上位に入っているが、視線検知や睡眠検知などの技術が医療 機器に分類されているためである。

生体現象計測機器以外では、プレーヤーも重なる部分がある画像システムや治療機器で の出願が多い一方で、衛生材料や鋼製器具、施設用機器への応用例は少ない。

5. 考察

(1) 医療機器市場規模と出願状況

図14に各地域の医療機器市場規模を示す。図4に示した医療機器分野の出願件数と比較し て各地域の医療機器市場規模と出願件数の相関を見て行く。

出願件数が急増している中国の医療機器市場は、欧米に比べるとまだ小さい。出願件数 は、政策により増やしている面があり、大学などの非製造業からの出願も多いことも含め て、現在の市場の状況を表しているというわけではないようである。ただし、市場も急速に 成長しており、伸び代が大きいことも含めて大量に出されている特許が、海外メーカーに とって今後大きな参入障壁になる可能性は高い。

最大の医療機器市場である米国には、やはり多くの特許が出願されている。表5に各地域 に出願された特許のうち自国からの出願の割合を示す。この表では、米国への自国からの出 願は約50%と海外からの出願が多い。この表は、全出願に対するデータであるが、医療機 器の各セグメントの上位出願者ランキングを見ても、海外からの出願が多く、米国医療機器 市場を海外医療機器メーカーも重要視していることがわかる。

米国に次いで医療機器市場規模が大きい欧州への出願件数は、日本と同等以下と少ないよ うに見える。欧州への欧州内からの出願の比率は47.8%と低い。米国と同様に大きな市場に 対して海外からの出願が多いということも考えられるが、欧州には欧州特許庁のほかに各国 特許庁へ直接出願するルートもあるため、自国内だけでビジネスをしているような企業は、 欧州特許庁経由ではなく自国の特許庁のみに出願していることも考えられる。

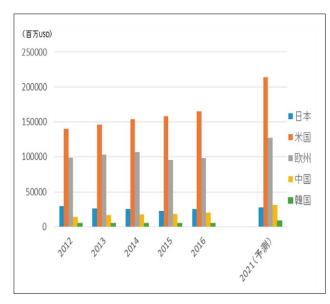


図14. 各地域の医療機器市場規模の推移

出所)Espicom Worldwide Medical Market Forecasts to 2021より作成

表5. 各地域の自国からの出願比率(2016年)

地域 (出願先特許庁)	自国出願比率
日本(JPO)	81.7%
米国(USPTO)	50.2%
欧州(EPO)	47.8%
中国(SIPO)	90.1%
韓国(KIPO)	78.4%

出所)「特許行政年次報告書2018年版」8)より作成

(2) 全出願に対する医療機器分野の出願 件数比率

図15で全体の出願件数に対する医療機器分野の出願件数の比率を見てみると、件数では他の地域を圧倒していた中国であるが、特許、実用新案ともにその比率は他地域に比べて低い。他地域の医療機器の比率がやや増加している傾向にある中で、中国はやや減少傾向にあるようにも見え、全産業の中での医療機器産業の比重は他地域に比べると大きくないことが伺われる。

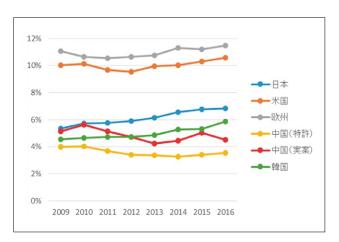


図15. 総出願件数に対する医療機器分野の比率

医療機器の出願件数の比率が一番高いのは、欧州であった。医療機器の市場規模が米国に次いで大きいことで、海外の医療機器メーカーも積極的に欧州へ出願しているものと思われる。また、シーメンスやフィリップスといった巨大な医療機器メーカーの存在も影響していることが考えられる。

米国も医療機器の出願件数が高い水準で推移している。世界最大の米国市場に対して海外の医療機器メーカーからの出願が多いこと、シリコンバレーに代表されるような先端の医療機器開発が活発であることも、医療機器分野の出願数に影響しているものと思われる。

日本は、医療機器分野に出願件数自体はやや減少傾向であるが、医療機器分野の比率は上昇傾向であり、政府が健康寿命の延伸に向けて、医療・ヘルスケア領域の政策を多く打ち出していることもあり、産業としては活性化している方向にあるのではないだろうか。

(3) 各地域のセグメント別出願動向及びセグメント内の分類数との関係

各地域のセグメント別の出願動向の傾向を俯瞰するために、セグメントを出願件数が多い順番に並べたチャートを図16に示す。医療機器の目的別の動向を分かりやすくするために、図5~10と同様に、「診断系機器」を青系、「治療系機器」を赤系、「その他」を緑系に色分けした。また、各セグメントの出願件数は、そのセグメントに含まれる製品の種類に比例する可能性は十分にありうる。ここでは、薬事工業生産動態統計で使用している分類の数が、製品種類の数とある程度相関関係があると考え、最下段に各セグメントをそのセグメントに含まれる分類数が多い順番に並べた。

中国の実用新案を除いて、どの地域でも分類数では2番目に多い生体現象計測機器の出願件数が一番多く、分類数が一番少ない衛生材料の出願件数が一番少ない結果であり、やはり各セグメントに含まれる分類数と関連性があるように見える。分類数が多いものは、より細分化された用途や製品があることを示しており、その分出願につながる新規技術や改善・改良点も多くなる。

分類数が一番多い歯科用機器・材料は、その大半が歯科用材料になっており技術の幅を考 えると分類数は多いが、出願件数としてはあまり多くなっていないものと思われる。

生体現象計測機器は、診療科目や計測対象も多いこと、使用する技術も機械系・電気系・ 制御系など幅が広いことも出願件数の増加につながっているものと考える。

全体的には、どの地域でも「治療系機器」の出願が多く、「その他」に属する機器に関する出 願が少ない傾向にある。

図16. 各地域のセグメント別出願件数順位

(4) セグメント別市場規模と出願動向

図17に日本国内の各セグメントの出願件 数と市場規模を示す。上から出願件数が多 いセグメント順に並べている。

市場規模の大きいセグメントには、参入 する企業が増え、新規製品や既存製品の改 良の機会も多い傾向にあるのが一般的では ないかと思われる。それに伴い、出願の件 数も増える傾向にあるのではないかと考え たが、必ずしも市場規模の大きなセグメン トの出願件数が多いというような明確な相 関関係は見られない。

出願件数が処置用機器の1.5倍と一番多 い生体現象計測機器では、先述の通り、機 械、電気、制御等様々な技術の組み合わせ で構成されており、出願は増える傾向に あるが、市場規模は処置用機器の約1/5と なっている。

図17. 日本の出願件数と市場規模、国内生産額の 関係(2016年)

出所) 平成28年度薬事工業生産動態統計9)より作成

市場規模が大きい処置用機器では、カテーテル類など比較的安価な製品を大量に売ること で大きな市場規模になっている。構造が比較的シンプルなカテーテル類の1製品に占める特 許の数があまり多くない結果として、市場規模や生産額に対する出願件数があまり多くなっ ていないということも考えられる。

今回は国内の市場に対する相関のみを見ているが、海外でより大きな市場があるようなセ グメントに対しては、海外の市場を守ることを目的とした特許を同時に国内にも出願するこ とは通常行われており、国内市場とだけ比較するのは適切ではないのかもしれない。

また、一製品に占める出願件数と価格、販売数などの関係なども考慮する必要があると思 われた。

6. まとめ

今回の調査では、医療機器の分野においても中国での出願の急増ぶりを改めて確認すること ができた。出願人の内訳を見ても中国の企業や大学からの出願が多く、急成長している中国の 産業の状態を反映していることがわかる。セグメント毎に見ても、ほぼ一様に右肩上がりの出 願件数を示しており、医療機器全般に研究・開発を進めていることがわかった。一方で、中国 国内で多くの特許を出願している企業や大学のほとんどが海外に出願していないことも明確に なった。中国への出願と米国への出願で件数的に大きな差が出ているのは、中国勢の米国への 出願件数が非常に少ないことも大きな要因となっている。

米国については、グローバルに展開する企業の強さが際立っている。また、これらの企業 は、その他の地域においても多くの特許を出願しており、明確な特許戦略に基づいてグローバ ルにビジネスを展開している。

日本の企業に関しては、日本国内ではしっかりとした特許網を構築しているように見える一 方で、一部の大企業を除いては、海外での出願件数の上位に入っている企業は少ない結果で あった。

AIと医療機器の技術を含む特許に関しては、世の中のAI技術の進歩に合わせて2013年あた りから急激に増加している。世間では、AIを医療の分野に応用して一定の成果が出ている報 道を非常に多く目にするが、絶対的な件数で言うと2016年に一番多かった米国で約700件とや や少ない印象を受けた。現時点では医療とAIを融合させたところに技術的な特徴がある研究 だけでなく、医療機器からの出力を純粋にAI分析しているような研究も多いのではないか。

また、生体現象計測機器や画像診断システムなどAIと親和性の高い医療機器に関わる出願 が多かった。この傾向は当面続くものと思われるが、一方でその他のセグメントでも少数では あるが、AI関連の出願がなされていることは非常に興味深く、AIの可能性を感じさせられる 結果といえるのではないか。機会があれば詳細を紐解いてみたい。

7. おわりに

今回の分析で中国の勢いを非常に強く印象付けられた。ITの分野で世界的に存在感を示し ている、バイドゥ、アリババ、テンセントのような企業が、医療機器の分野でも現れるのも時 間の問題なのかもしれない。

今回は、出願件数のみで医療機器産業の注力分野を俯瞰してみることを主眼に置いたが、機 会があれば特許の登録率や登録までの期間、引用件数など範囲を絞って、質の観点からの検討 も行ってみたい。

中国市場は医療機器にとっても急成長を遂げている魅力的な市場ではあるが、これだけ膨大 な数の特許が出されており、特許侵害に対しても厳しい政策を打ち出していることから、日本 企業の中国進出にあたっては知的財産戦略も極めて重要になってくる。

日本企業の海外進出については、知的財産戦略も含む海外展開も視野に入れた中小・ベン チャー支援の政策も進められているので、今後に期待したいところである。

8. 参考文献

- 1) 特許庁 「IPC分類表及び更新情報」 https://www.jpo.go.jp/system/patent/gaiyo/bunrui/ipc/ipc8wk.html
- 2) 独立行政法人 工業所有権情報・研修館 「中国における実用新案制度の概要と活用」 https://www.globalipdb.inpit.go.jp/application/2555/
- 3) 特許庁 「特許・実用新案とは」 https://www.jpo.go.jp/system/patent/gaiyo/seidogaiyo/chizai04.html
- 4) 一般財団法人 日本特許情報機構 「各国の実用新案制度の特徴と今後の動向」 http://www.japio.or.jp/00yearbook/files/2012book/12_1_03.pdf
- 5) 厚生労働省 「薬事工業生産動態統計調査」 https://www.mhlw.go.jp/toukei/list/105-1.html
- 6) 特許庁 「平成29年度 特許出願動向調査報告書(概要)ーマクロ調査ー」 https://www.jpo.go.jp/resources/report/gidou-houkoku/tokkyo/document/index/29_macro.pdf
- 7) 特許庁 「平成26年度 特許出願技術動向調査報告書(概要) 人工知能技術」 https://www.jpo.go.jp/resources/report/gidou-houkoku/tokkyo/document/index/26_21.pdf
- 8) 特許庁 「特許行政年次報告書2018年版」 https://www.jpo.go.jp/resources/report/nenji/2018/document/index/honpen0101.pdf
- 9) 厚生労働省 「平成28年薬事工業生産動熊統計年報の概要」 https://www.mhlw.go.jp/topics/yakuji/2016/nenpo/